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An experimental study of expanding gravitational systems of N bodies is performed 
by means of computer experiments. A description of the numerical techniques, inte- 
gration scheme, special handling of close encounters, is given. The effect of the rest of 
the universe on the system is simulated by adding a smooth time dependent gravitational 
field. The results are compared with the evolution of similar systems with more discrete 
particles placed outside. During the computer experiments, a reduction of the number 
of bodies is sometimes made by reducing small subclusters to single particles at their 
centers of mass. For 25 < N < 200, the results are shown to be sensitive to nearby 
external physical sources. Some very accurate, reversible and reproducible runs have 
been made in order to show that the computations represent purely gravitational inter- 
actions, without uncontrolled and unphysical perturbations. 

1. INTRODUCTION 

The formation of galaxies, clusters of galaxies, and superclusters in an expanding 
cloud of small lumps of material may be due to relatively close gravitational 
binary interactions between the lumps [5, 10, and references therein]. The rates 
have been shown to be insensitive to the internal dynamics of previously separated 
small clusters, but could depend strongly on the presence or absence of large scale 
distant aggregations. In the present paper we describe an experimental method, 
using computer models, for studying the influence of such aggregations. Moreover, 
results are presented that will provide a justification for procedures used in studies 
of cosmological clustering [6]. 

Our models are based on the exact integration of the motion of N point masses 
interacting gravitationally. The equations of motion are: 
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where (xi1 , xi2 , xi3) = (xi , yi , zi) are the Cartesian components of the position Ri 
of particle number i with mass mi , and Rij is the distance between particles i and j. 
When converting (1) to a first-order system, one writes xi,, = dxi.&dt, p = 4,5,6. 
The universal gravitational constant has been set equal to unity. Initial conditions 
are to be chosen at some initial time t, . 

This problem, the gravitational N-Body problem, has already formed the subject 
of numerous studies. All of them show that there is a fundamental instability in the 
numerical procedure, an instability due to the singularity of the equations of 
motion when the distance Rij of two particles approaches zero (during an 
“encounter”). If the particles are not point masses and have a dimension 1, the 
Newtonian force law should be modified for encounters with Rii < 21. In this 
paper, in order to test the effects of purely gravitational forces between centers of 
mass of the lumps and small clusters we take I to be small, i.e., 1 = 0. 

In order to remove the singularity of the equations of motion for two-body 
encounters, a mathematical transformation of the equations of motion called 
regularization is used. 

The integration of the equations of motion is performed using a high-order 
Runge-Kutta integrator with an automatic step-size control. Very high accuracy 
is obtained by adopting the same step size for integrating the motion of all the 
particles. 

An improved one-step method with variable order is used for systems with a 
large number of particles (N > 100). 

When one wants a complete reproducible and reversible evolution, one cannot 
practically take more than a few hundred bodies into consideration. This means 
that we will be able to integrate exactly only a small part of a large cloud. One 
purpose of this study is to check in what manner the neglected or crudely treated 
parts of the cloud influence the evolution of a given subsystem. 

This can be done by comparing the numerical evolution of a system resulting 
from the adjunction of two or more continuous subsystems with the numerical 
evolution of each of these subsystems taken in isolation. Such contiguous sub- 
systems have to fit together, so it is convenient to take their shapes as cubical. 
In order to take into account at least the effect of a smoothed-out mass distribution 
representing the rest of the cloud, it is reasonable to add an external force acting 
on the particles, specifically, an asymmetric force field due to a uniform mass 
density outside the cube but within an enclosing sphere. If such a force were not 
added, one would expect the cubes to become distorted not only by diffusion due 
to discreteness effects, but also because of the unphysical pinching of the corners, 
etc., due to the mean field generated by such a truncated system. 

In fact we did not find that any such pinching effect became dominant when the 
external force was turned off. Instead, we found that the external force gives rise to 
a surprisingly large systematic evolution of the total energy of the system, which 
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would otherwise be conserved. That in turn greatly affected the systematic evolution 
of the system. We can therefore think of the external field as representing a large 
effect due to interactions between the bodies and massive external aggregations. 
Since the equilibrium size of a new cluster is very sensitive to its total energy (when 
that is close to zero), such energy channels destabilize the evolution well in excess 
of naive estimates based on the small magnitude of the additional potential energy 
associated with the external forces. By retaining accuracy in the N-Body integration, 
we are able to isolate such a physical instability from the previously mentioned 
numerical difficulties due to close encounters. Similar physical effects in non- 
expanding systems have previously been studied by Miller [9] (see also a review 
of Saslaw [12]). 

2. TREATMENT OF CLOSE ENCOUNTERS 

(a) General Remarks 

The equations of motion (1) for the gravitational N-Body problem have a 
singularity when Rij approaches zero. This singularity gives birth to unpleasant 
numerical difficulties when two bodies are very close together. 

One simple way this problem can be approached is to introduce a cut-off 1 of the 
Newtonian force Fij between the two bodies i and.j when their distance Rij becomes 
small. For example one could specify that 

1 Fij 1 = G(mimj/(Rfj + 1’)). 

This procedure is plausible when 1 can be identified with the spatial extension of 
bodies that have sizes comparable with the distances between neighbors, like star 
clusters and clusters of galaxies. It has been applied to galaxies and clusters of 
galaxies by Aarseth [l], Peebles [lo] and recently by Press and Schechter [l 11. 

In this project we have introduced no such cut-off: I = 0. Although we have in 
mind the study of the further clustering of loose, extended clusters of galaxies, we 
should like to be able to study properly the effects of close encounters in systems of 
particles with concentrated masses, such as stars. But more importantly, it is 
essential to verify the intuitive idea that long-range gravitational clustering 
processes are not affected by the precise manner of treatment of close encounters. 
Thus at least a few tests where no cut-off is introduced (I = 0) are appropriate, 
and it is our purpose to design and conduct such tests. 

Therefore we will instead use a mathematical transformation of the equations 
of the two-body motion for removing the singularity. Such transformations exist 
and are called “regularizations.” The most famous transformations in the 
tridimensional space is the Kustaanheimo-Stiefel (KS) transformation [ 131. 
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(b) The KS Transformation 

In this regularization procedure, a new independent variable s called fictitious 
time is introduced by 

dt = Rij ds, (2) 

where Rii is the mutual distance of the two bodies i and j which motion is to be 
regularized, and a set of four new dependent variables {ur , ue , uQ , u4} defined by 
a matrix transformation L(u) such that 

x = L(u)u. 

The equations of motion corresponding to system (1) are in the new variables: 

u” + (h/2)u = (I u 12/2) LrP (3) 

where primes denote derivatives relative to s and LT, the transposed matrix of L, 
operates on the perturbation force P which represents the gravitational influence 
of the N - 2 other bodies. In (3) h is the energy of the two-body system and satisfies 
the differential equation 

h’ = -2(u’, LTP). 

A more detailed collection of related formulas can be found in Stiefel and 
Scheifele [13, p. 331. 

The equations of motion (3) are regular and are equivalent to the equations of an 
harmonic oscillator for vanishing perturbations. But their numerical integration 
involves more computations than the integration of system (1); therefore they 
should be used only for close encounters between two particles and should be 
switched off when the encounter is over. Several independent encounters can be 
simultaneously treated in this way. 

(c) Uniform Regular Canonical Elements 

An improvement of the KS procedure is possible. It consists of building a set 
of elements, which are new dependent variables varying only linearly in the absence 
of perturbations. In the case of weak perturbations, which is the usual case, the 
integration of elements will give rise to less truncation errors than the integration 
of the u variables. 

Such a set of elements is easy to establish for pure elliptical or hyperbolic motion. 
But in the N-Body problem a two-body subsystem can experience a continuous 
transition between an elliptical and a hyperbolic motion through the influence of a 
third close body. Stiefel and Scheifele [13] suggest a set of uniform canonical 

581/16/r-6 
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regular elements which can handle such situations. Their implementation has 
met with some success. The mean computing time saving for 25body runs, 
through this procedure for treating close encounters, was 10 % better than with the 
u formulation (3). However, we do not think that this improvement is large enough 
for justifying the implementation of this procedure, so we merely refer the reader 
who wants more details to Stiefel and Scheifele [13, p. 2511. 

3. THE INTEGRATION SCHEMES 

The straightforward integration of the 3N second-order differential equations 
of motion (1) from some initial values, with a classical integration scheme, will 
quickly lead to erroneous trajectories. The rapidly varying functions during close 
encounters between particles need a variable step size with a good step-size 
estimation. 

Such a method is described in the pioneer work of von Hiirner [14]. But a limi- 
tation of this method comes from the unavoidable formation of binaries during the 
evolution of the system. Integration of the motion of these binaries requires a very 
small step size for too many of the steps. 

A major improvement consists of introducing the regularization procedure, 
outlined at the preceding section, for each of the close encounters and binaries. 
A test on the mutual force Fi:ij of all the pairs of the system decides at each 
integration step which pair is interacting strongly enough (Fkl > Fum) for applying 
the procedure. The parameter can be chosen to be of order 10 times the mean force 
between two neighboring particles of the system. To keep the same independent 
variable for the whole system of differential equations, the fictitious time of the 
pair with the smallest mutual distance Rkl is chosen as independent variable, 
and the right-hand side of all equations not belonging to this pair are corrected 
by the factor RkL , according to Eq. (2). The center of mass of the regularized 
pairs has to be integrated too. Each regularized pair increases the equations to be 
integrated by four. Transformation between x and u space has to be done at each 
function evaluation in order to compute the force P of the N - 2 other bodies on 
the regularized pair. 

The frequent switching in and out of regularized variables recommends the use 
of a one-step integration method. High-order methods have been found to be 
highly efficient. Attention has been focussed on an eighth-order Runge-Kutta 
scheme due to Fehlberg (1968) because of its convenient step-size control. In the 
so-called 7(8) method, at each step a seventh-order and an eighth-order estimation 
of the solution are simultaneously computed for each equation, and the difference 
of these two estimations gives an approximation of the truncation error at this step. 
The largest truncation error is used to predict the size of the next step. Even with 
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regularization, the step size cannot be taken constant because of eventual multiple 
collisions. 

An N-body program based on the Fehlberg method and regularization of one 
pair is described in Bettis and Szebehely [3]. Such a program is very efficient for 
systems of less than 100 bodies (typically 25 bodies), and was used to obtain 
preliminary results [5]. Even if several pairs are simultaneously regularized, the 
fact that the same step size (collective step size) is used for the motion of all 
particles of the system makes this method too slow for N > 100. 

A successful improvement is the individual step-size scheme, where each star 
has its own step size. In the method of Aarseth [2], a polynomial interpolation along 
the current successive mesh points of the integration of each particle allows the 
computation of the position and therefore the force on any particle at any time. 
Regularization is included. 

We prefer to orientate ourselves towards another direction. The collective 
step-size method has the advantage of simplicity. This is important for us as we 
intend to complicate our system for example by introducing an external field and 
by changing the integration problem at various times (Section 6 below). In order 
to define a kind of variable precision in the collective step-size scheme, we propose 
to have a variable order for the integration method. A high-order scheme is applied 
for stars involved in a strong interaction while a low-order scheme is sufficient for 
describing the motion of isolated stars. 

A Runge-Kutta method cannot be practically used for this purpose and a new 
method was developed. This method described in Janin [7] is outlined here. 

If one has, for solving system (1) converted to a first-order system, a polynomial 
approximation p,!,“‘(t) of order L for the solution xi,(t) (CL = 1, 2,..., 6) in the time 
interval (t, , t,+l ) at the mth integration step, one can build, using the right-hand 
side of(l), a polynomial approximation Q::‘(t) of (d/dt) xi,, in (tm, tm+l). Integration 
of Q&?(t) between (t m , t,,,) gives an approximation Pi”+‘) of order L + 1 of x&t), 
using the given initial values xiU(tn). This iterative procedure, called Picard 
iteration, can be pursued up to any desired order. 

In practice, Chebyshev polynomials are used and, at each integration step, 
successive polynomials of order 0, 1, 2,... are built for each component of each 
star until a precision test is satisfied. For smoothly behaving stars the test is 
satisfied already with low-order polynomials, while for stars involved in close 
encounters, high-order polynomials are required. The collective step size is also 
variable. 

The efficiency of this new method, defined by the number of evaluations of the 
right-hand sides of the differential equations for a certain accuracy, is much less 
than for the Runge-Kutta method; however, for a large number of particles 
(iV > lOO), the reduction of computing time due to the variable-order scheme is 
predominant and makes the method useful. Therefore we applied it for N > 100 
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(typically our 200-body system) while we usually employed the Runge-Kutta 
7(8) method for N < 100 (typically our 25-body systems). The results were 
equivalent. 

The choice of our integration methods and the complication of introducing 
regularization are made in order to have highly accurate computations of the 
trajectories. Is such accuracy needed? Previous results [5J suggest that it probably 
is not, for a global study of the evolution of an expanding system, but it is the only 
way to be sure the computation is not meaningless. It is well known that the 
gravitational N-body problem is unstable, and we want to be sure that all statistical 
fluctuations are associated with the physical approximations and initial conditions, 
rather than numerical instabilities. 

4. A CORRECTIVE FORCE FOR CUBIC SYSTEMS 

Our aim is to study clustering of gravitational particles in a large initially 
homogeneous expanding system. The systems we can numerically study are of 
finite dimension and boundary conditions have to be defined. It is a delicate 
problem, and no matter how the boundaries are defined, one will have to check 
experimentally if they are realistic. One way to do it is to consider a system 
containing a subsystem and to compare the behavior of the particles of the 
subsystem in isolation (but with the specified boundary conditions) with the 
behavior under the influence of the other particles of the system. Such a study 
would not encompass all possible long-range interactions, but would test only the 
influence of relatively short-range forces, due to particles just outside the subsystem. 
It is not necessary to completely enclose the subsystem; it is already interesting 
to extend only one face of a cubical system by adjoining a cube of the same size. 

In an effort to reduce spurious effects due to the absence of spherical symmetry, 
we introduced an auxiliary field to represent the smeared-out material outside the 
regions containing particles. Equivalently, we may think of the field as being due 
to a fictitious uniform negative mass density in the regions containing particles, 
together with a central attractive field that is linear in the displacement from the 
center. 

The gravitational field and potential of a homogeneous cube can be expressed 
in closed form by a formula containing only elementary functions [8]. This formula 
has been reestablished in a more elegant way by Waldvogel [15]. The field is com- 
puted exactly and added to the interparticle forces. The system is expanding, so 
that the additional field is time dependent. The appropriate time dependence 
cannot be precisely determined. A suitable model is specified by considering 
uniform fluid models with the same initial mass density and mean velocity, without 
allowing for inward diffusion of the fluid. 
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5. INITIAL CONDITION FOR EXPANDING SYSTEMS 

For the 25-body systems, the particles, each of mass 1 (rather than the somewhat 
more standard l/N) with the gravitational constant G = 1, are initially placed at 
random inside a cube whose sides have length 2(7~/6)l/~ (corresponding to a sphere 
of equal volume and radius 1). Figure 1 shows an (X, Y) projection of such 
positions. 

TIflE = 0. 
.626 HOR SCRLE= ,166 VEA SCRLEI .I66 

+ 
+ 

,663 
+ 

-~6z6~L-----l 0.000 .626 ” 
X 

FIG. 1. The initial positions of the 25 lumps in one of eight small cubical systems. A “lump” 
is a particle of mass 1. 

For 50-body systems we adjoin two such cubes side-by-side and for 200-body 
systems, eight such cubes to form a large cube with side 4(n/6)l13. 

The velocities are taken as the sum of two terms 

where 

vi = vp* + vpec 

vy* - Ri , 

a pure expansion term, and Vi pec, the “peculiar” component, is chosen according 
to a Maxwellian distribution. 
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The crossing time 
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t, = 2 &’ [N(R;‘>“]-“” 

has initiahy a value of 0.43, but is strongly increasing when the cluster expands. 
For the runs described below, the scale of the initial velocities was such that 

25-body spherical systems are expected to have zero total energy. Therefore the 
25-body cubical systems have total energies that are small but positive, the kinetic 
energy of expansion being affected more than the potential energy by the distortion 
of the shape. The potential energy of a sphere of mass 1 and vol 1 is 
(3/5)(4r/3)r13 = 0.967; the potential energy of a cube of mass 1 and vol 1 is [15] 

Arsh(1) + Arch(2) - (7r/3) + (l/S)[l + 21j2 - 2(3)‘/“] = 0.941. 

The ratio of the two, 0.973, deviates from unity by less than the corresponding ratio 
of expansion kinetic energies, (5/3)(~/6)~/~ = 1.083 (for fixed density and Hubble 
constant). For the runs shown in Fig. 2, we took the initial motion to be that of 

(a) TIflE = .306 (b) TIME = .306 
2.369 + + * + ++ Y + 

$+ l * 
++ 

+ 

+ + + + 

-2.369 l!!El 
-2’.3as 

(~1 TIflE = .900 (d) TInE = .900 
4.666 _ 

+ + + 

+ 

l 

Y-7 
+++k: l * 

l l ‘. + 
* 

-4.666, 
-4 .a66 0 .ooo 4.666 

X 
Lt.717 

-6.717 0.000 6.717 

X 
FIG. 2. The evolved positions of the lumps of Fig. 1. (a), (c): external force on. (b), (d): 

external force off. There were no initial peculiar velocities: y = 1. 
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pure expansion. For the runs shown in Figs. 3-6, peculiar velocities were added to 
(reduced) expansion velocities, so that for the 25-body cubes, the ratio 

was about 0.75. 

y = ( 

exp 2 

I; ;Gi ,4 1 initial 

Since the peculiar kinetic energy scales as the first power rather than the five- 
thirds power of the total mass, the adjoined 200-body systems therefore had 
a slightly negative initial total energy. 

6. EXPERIMENTS WITH EXPANDING SYSTEMS 

(a) Effect of the External Force 

Figure 2 shows the evolution of the initial positions of Fig. 1 for y = 1. The 
X-Y projections of the positions at times t M 0.3 (Fig. 2(a,b)) and t = 0.900 
(Figs. 2(c,d)) are given for a run where the external force was added (Fig. 2(a,c)) 
and for another where it was turned off (Figs. 2(b,d)). The external force is seen 
to affect the details of the positions, but not the general distribution of clusters. 

Figures 3(a) and 3(b) similarly show the corresponding positions for y = 0.75 
and t M 0.3. 

Figures 3(c) and 3(d) show the X-Y projection at time t = 0.144 of the positions 
of a mass-200 system for y = 0.75. The region X < 0, Y < 0, Z < 0 originally 
contained the displaced bodies shown in Figs. 3(a,b); the other seven subcubes 
contain bodies whose positions were determined by mutually distinct sets of 
random numbers. Figure 3(d) is the result of an accurate, reversible integration, 
with the external force turned off, followed by the combination of 25 bound 
binaries into the center-of-mass points indicated by the symbol v (cf. [Sy). 
Figure 3(c) is the results of two accurate integrations, with the external force turned 
on. The first was to time t = 0.073. Then 25 binaries were combined (16 of which 
were the same as the others). The second was an accurate integration of the 
resulting 175-body problem, from t = 0.073 to t = 0.144. We may think of the 
first integration as providing a set of initial conditions for the second integration. 
In this sense the combinations do not destroy the accuracy. 

Once again, the clusters, though not the exact positions of all the bodies, are 
independent of the presence of the external force. 

Several parameters were examined to determine the most significant deviations. 
By far the most interesting deviation we encountered was that of the total energy 
of the N-body system, which showed a surprisingly large systematic evolution when 
the external force was on. One can understand how the force field would tend to 
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absorb energy from the outer particles, especially from the escapers, since there is a 
retardation owing to the positive mass background outside the face centers. The 
surprise was the magnitude of the effect. It was such as to drive the virial ratio 
(twice the kinetic energy divided by the interparticle potential energy) from about 2 
to about 1 by the time the system expanded by a factor 4 in diameter (see Table 1). 
The energy exchange then slowed abruptly. 

TABLE I 

Evolution of the Total Energy of the System (Mass 200) Shown in Figs. 3(c), 3(d), 4 and 6(c), 
and of some central subsystems 

Number Orbital* Total Energy/Mass Energy/Mass 
of Kinetic InternaP of Central of Central 

Bodies Energy Energy Sphere” Cubed 

External 
Force: 
Time 

0.1441 
0.1441 
0.3000 
0.4500 
0.7500 
0.9000 
1.5000 

On 

- 
175 
135 
120 
97 
80 
80 

Off 
- 

200 
175 
175 
143 
115 
90 
90 

On Off On Off 

- 5744 
5143 5672 
3268 4031 
2402 3248 
1584 2522 
1208 2191 
1534 1781 

-1711 
-1936 
-2051 
-2234 
-2266 
-2286 

-1188 
-1188 
-1188 
-1188 
-1191 
-1194 
-1194 

On Off 
__-- 

-299150 
- 300/50 - 300150 
-409/50 -360150 
-413/50 -394150 
-499154 -387150 
-454150 -566158 
-458150 -491152 

On Off 

- - 276150 
-283150 -286151 
-332150 -309150 
-388/51 -378150 
-455151 -431/50 
-448150 -435/50 
-453151 -457150 

a Does not include internal kinetic energy of combined particles. The evolution of the virial 
ratio may be determined by comparing this column with the next. 

b Includes a correction (<20 ‘A) due to the binding energy of composite particles, but does not 
include any potential energy due to the external field. This energy is accurately conserved by the 
integration method when the external force is off. The change from -1188 to -1194 occurs 
because of combinations of particles into center-of-mass points. 

c The particles nearest the center of the system, consisting of approximately l/4 of the total 
mass. The energy includes binding energies but not external field potentials. 

d Let (j(v), Y = 1, 2, 3,...) be a sequence of particle labels such that max, 1 A&lP I < max, 
] Xr(V+l)G 1. Then the “central cube”consists of particlesj(l),j(2),...,#), where [satisfies XiI:m,(,) < 
(1/4)M and d,, m,(,) > (1/4)M. These are different at different times. 

It would be tempting to interpret this evolution as a relaxation towards a state 
satisfying the virial theorem (cf. [9]), made possible by the breaking of the symmetry 
of energy conservation by the opening of a channel of interaction between the 
bodies and the massive effective sources of the external field. Subsequent extended 
runs did not verify that such an interpretation is generally valid; indeed, sometimes 
the evolution reversed itself, and the virial ratio became once again greater than 2. 
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Thus one must be very cautious about drawing firm conclusions on the basis of a 
few runs with many of the parameters fixed. 

Table I also shows that in both cases the magnitude of the energy of the central 
regions of the system also increases, and that the rate of increase was rather 
independent of whether the extermal force was on or off. That suggests that 
material in neighboring regions of comparable size, rather than material at a great 
distance, contributes most to such energy exchanges. 

Figure 4 shows the same pair of runs at times 0.75 and 1.5 (with similar 
reductions from N = 175 to N = 80 and 90). The deviation of the parameters of 
Table I is not reflected by any large deviation in the overall appearance of 
the system. 

(b) Efect of Distant Discrete Particles 

In Fig. 5 we study (at t = 0.3, 0.9) the effect of a single plane boundary by 
comparing the evolution of a 50-body system with shape 2 x 1 x 1 with one of 
its halves, the right half. The displaced positions (at t = 0.0, 0.3) of the left half 
were shown in Fig. 1 and 3(a). Some combinations were made at t = 0.3, so that 
a 36-body problem was integrated from 0.3-0.9. 

Our general impression is that the motion of the particles near the boundary is 
severely affected by the presence or absence of particles on the other side of the 
boundary. For instance, in one case but not the other a large cluster may form, 
may interact strongly with another large cluster in the interior, and may be 
transported inward. An attempt to fit together the single cubes at an advanced time 
by comparing positions of the corresponding particles was a failure (even if the 
original cubes were allowed to overlap and to contain common particles). More 
progress could be made by forgetting the initial labeling of particles, considering 
only the instantaneous distributions of positions and velocities, and fitting various 
averages of these with the corresponding parameters of fluid models. 

However, at a distance from the boundary under study, the particles can easily 
be identified by their common positions, and the clustering is unaffected. 

In Fig. 6 we change perspective from the X-Y to the Y-Z projection. Figure 6(a) 
shows the same positions as Fig. 5(c), except viewed from the end of the double- 
cube. Figure 6(b) gives the same view at the same time t = 0.9 of a mass-200 
system obtained by joining side-by-side the positions from two mass-100 runs. 
One set (displaced to the region Y 5 0) was the result of taking the mass-50 system 
of Fig. 5(c) but at time 0.61, displacing it to the region Z 5 0 and adjoining a 
similar set of positions with 2 2 0. This similar set was obtained with different 
random numbers determining the coordinates of the original 50 lumps. After a 
reduction of the mass-100 set to N = 47, an integration to t = 0.9, and a further 
reduction to N = 35 by making combinations of small bound clusters into center- 
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of-mass points (cf. Section (a) above), the system was adjoined to a second set of 34 
bodies obtained similarly but displaced to Y > 0. 

Figure 6(b), then, is a 69-body cubical system of mass 200, consisting of four 
double-cubical regions bounded approximately by the Y = 0 and Z = 0 planes. 
The positions were obtained by integrating the system without allowing any 
communication between the Y > 0 and Y < 0 parts, and allowing interparticles 
interactions between the Z < 0 and Z > 0 parts only for 0.6 < t < 0.9. All 
interactions across the X = 0 plane were taken into account from the beginning. 
The comparison is with Fig. 6(a), representing the region Z < 0, Y < 0 integrated 
in isolation. In this case the similarity of the two is not striking, partly because of 
different combinations in the two cases. 

Figure 6(d) shows the result of integrating the coordinates of the system of 
Fig. 6(b), reduced to a .50-body problem, and integrated from t = 0.9 to t = 1.5. 
That is to be compared to Fig. 6(c), which is the same as Fig. 4(c) but viewed from 
the Y-Z plane. It represents the integration of the same 200 lumps to the same time, 
but with full communication. Again the general distribution of clusters is 
comparable. 

(c) Adjunction of Subsystems 

The rules for displacing the center-of-mass positions and velocities of the 
subsystems out of communication (in the Z direction at t = 0.6 and the Y 
direction at t = 0.9) were difficult to specify. The rates of expansion of the various 
systems was due not only to the initial expansion bias in the velocities, but also to 
the pressure associated with the peculiar kinetic energy. Diffusion owing to cluster 
interactions caused penetrations of subsystems into each other and fluctuations 
in the magnitude of all these effects. 

We avoided the difficulties by simply using the evolution of the mean velocity 
field in a perfect fluid model with zero total energy. The amount of displacement 
was taken as 

R, = (1 + 3(25/2)lj2 t)“‘“(r/6)‘/“, 

which was a slight overestimate for y = 0.75 (see Table II), but resulted in relative 
positions such as those in Fig. 6(b), where the density is fairly continuous near 
Y = 0. In specifying the displacement in velocity, we compensated by retaining 
a factor y1i2; to get 

v, = [50 y/Rp(T/6)1/3. 

Table II and Fig. 6(c,d) show that this is the right order of magnitude. 
In a subsequent paper [6] we will therefore feel free to treat systems of 800 of the 

original lumps by doing integrations on subsystems with N < 200, and adjoining 
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TABLE II 

A comparison of the center-of-mass position and velocity components normal to the bounding 
planes of various slices of the mass-200 cubical systems (t = 0.9, y = 0.75) of Fig. 3(c), 3(d), 

4, 6(b), 6(c), 6(d) 

Halves” 

200-body system 
External force of External force on 

Mass Center-of-mass Mass Center-of-mass 
pos. vel. pos. vel 

Adjoined 
50-body systems 
External force on 

Mass Center-of-mass 
pos. vel. 

x, < 0 100 -2.63 
x, < 0 92 -3.83 
x, < 0 102 -3.52 
x, > 0 100 3.67 
x, > 0 108 2.73 
x, > 0 98 3.86 

Central Quarter Slicez 
x, < 0 50 -1.01 
x, < 0 59 -2.69 
x, < 0 60 -2.15 
x, > 0 50 1.70 
x, > 0 52 1.56 
x, > 0 52 2.22 

-1.27 101 -2.22 -0.48 109 -2.20 -0.77 
-2.27 92 -3.27 -1.16 94 -4.33 -2.55 
-2.11 99 -3.31 -1.61 99 -4.00 -2.05 

2.27 99 3.34 1.56 91 3.63 1.72 
1.45 108 2.46 1.01 106 3.24 1.55 
2.39 101 3.46 1.84 101 4.15 2.26 

-0.26 50 -0.82 0.07 51 -0.54 0.11 
-1.29 51 -1.85 -0.08 60 -3.23 -1.63 
-1.00 62 -2.26 -0.98 55 -2.64 -1.03 

0.82 54 1.70 0.47 54 2.35 0.72 
1.11 50 1.26 0.74 57 2.11 0.88 
1.33 50 1.66 0.58 50 2.42 1.12 

b “Halves”: Subsystems (A4 m 100) bounded by a plane X, = 0 (l.~ = 1,2 or 3). 
1, “Central Quarter Slices”: Subsystem (M w 50) bounded by X,, = 0 and X, = const. 

the subsystems after suitable time intervals (with Rd and Vd increased by a factor 2). 
It turns out that the process cannot be carried on indefinitely to an arbitrarily large 
number of lumps, because too many of them remain unclustered for too long. 
However, much computer time can be saved in this manner, and the identification 
of clustering in such few-body models with clustering in a large expanding universe 
is made more convincing by these comparisons. 

7. CONCLUSION 

In this paper we have described an improvement in the efficiency of accurate 
200-body integration routines by the use of a one-step variable-order method with 
a collective step size and several simultaneous regularizations. 

The method was applied to the study of the effect of boundary conditions on 
clustering in expanding systems. We showed that there can be a surprisingly large 
systematic exchange of energy across such a boundary and that the formation of 
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clusters of a particular size and mass depends greatly on the presence or absence 
of adjacent material of similar size and mass. 

The details of the formation of particular small clusters are much more severely 
affected by changes in distant boundary conditions than by the previously studied 
combinations of other small clusters into center-of-mass points [5]. However, the 
generic rate of formation of small clusters in large systems seems approximately 
independent of the conditions at distant boundaries. 

ACKNOWLEDGMENTS 

Support from the Janggen-Pahn Stiftung (St-Gall, Switzerland) and the Fonds National Suisse 
de la Recherche Scientifique, permitting one of the authors (G. J.) to begin this research at the 
University of Texas at Austin is acknowledged. The other (M. J. H.) was supported by the Welch 
Foundation and is indebted to I. Prigogine for his constant interest in the work. 

We thank H. W. Harrison, D. G. Bettis, V. Szebehely and particularly 0. Graf for many 
helpful discussions during the course of this project, and R. H. Miller and S. J. Aarseth for useful 
comments on the manuscripts. 

REFERENCES 

1. S. AARSETH, M.N.R.A.S. 126 (1963), 223. 
2. S. AARSETH, Astrophys. Space Sci. 14 (1971), 118. 
3. D. G. BETTIS AND V. SZEBEHELY, Astrophys. Space Sci. 13 (1971), 365; 14 (1971), 133. 
4. E. FEHLBERG, NASA TR R-287, 1968. 
5. M. 3. HAGGERTY, “Formation of Clusters in 25-body Systems with Free Boundaries,” un- 

published report, 1972. A summary is to be published. 
6. M. J. HAGGERTY ANLI G. JANIN, Numerical experiments on cosmological clustering,” Aaron. 

Asfrophys. J. (1974), to be published. 
7. G. JANIN, “Proceedings of the conference on the numerical solution of ordinary differential 

equations” (October 19-20, 1972, the University of Texas at Austin), in “Lecture Notes in 
Mathematics,” Vol. 362, Springer-Verlag, Heidelberg, Germany, 1974. 

8. W. D. MCMILLAN, “The Theory of the Potential,” New ed., Dover, New York, 1958. 
9. R. H. MILLER, Ap. J. 180 (1973), 759. 

10. P. J. E. PEEBLES, Comments Ap. Space Phys. 4 (1972), 53. 
11. W. H. PRE%T AND P. SCHFCHTER, Ap. J. 187 (1974), 425. 
12. w. C. SASLAW, P.A.S.P. 85 (1973), 5. 
13. E. STIEFEL AND G. SCHEIFELE, “Linear and Regular Celestial Mechanics, Springer-Verlag, 

Berlin, 1971. 
14. S. VON H~~RNER, Z. Astrophys. 50 (1960), 184. 
15. J. WALDVOGEL, T’he Newtonian potential of a homogeneous cube (1972), unpublished. 


